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the physically meaningful possibility of calculating 
the course of the potential. 

I thank Professor Dr W. Gromes, Mathematisches 
Institut der UniversitSt Marburg, for a discussion on 
the problem of divergence and Dr S. L. Mair, Clayton, 
Australia, for her correspondence on the higher 
powers of the potential parameters, which was 
adverse but stimulating. 

APPENDIX 

We indicate the problems of Fourier transformation 
of the Boltzmann function (2) when it is used with 
the potential expansion (1). The Boltzmann function 
is divergent [f(u) ~ oo for u ~ oo] and its Fourier trans- 
form does not exist if (i) the highest power of u is 
odd and (ii) if the highest power of u is even and has 
predominantly positive coefficients. If the Boltzmann 
function is convergent its Fourier transform is gen- 
erally unknown but can be derived for the special 
case of site symmetry 1 from a known Fourier trans- 
form relation. Kendall & Stuart (1969, p. 158) give 
the Fourier transform of the one-dimensional 
Edgeworth series, which is real for even powers. 
Setting up the corresponding inverse Fourier trans- 
form relation and rewriting it into a Fourier transform 
relation, we show that the Fourier transform of the 
Boltzmann function with even powers u (site sym- 
metry 1) is given by an Edgeworth series in reciprocal 
space, with differential operators occurring in the 
exponent. Thus, for example, 

-t-oo 

f exp (-½x 2 -  ax 4) exp (itx) dx  

--OO 
=(27/') I/2 e x p ( - a O 4 )  e, xp( -½t2) ,  (A1) 

a > 0 .  D is a differential operator operating on 
exp (-½t2). Expressions like (A1) cannot be exactly 
evaluated analytically. Approximations in which the 
exponential function, containing the differential 

operators, is expanded into a series, can be so evalu- 
ated but no longer represent the exact Fourier trans- 
form of the Boltzmann function. 
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Abstract 

It is shown that the cumulant expansion of the anhar- 
monic temperature factor is a function whose inverse 
Fourier transform either does not exist or has negative 

regions. Since the probability density function for an 
atom should always be non-negative, the inverse 
Fourier transform of the cumulant expansion may be 
a poor approximation to the true probability density 
function. Correspondingly, the cumulant expansion 
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may be an inadequate tool for describing anharmonic 
motions. Five examples from the literature are quoted 
where the cumulant expansion gave worse results 
than other anharmonic expansions. 

The cumulant expansion of the anharmonic tem- 
perature factor, 

T(h)= g(h) exp/[(2-tri)3/3 !] ~ K°kh,hjhk 
k ijk 

+[  (2~'i)4/4!] ~ K°kth,hj hkht+' '"  I (1) 
ijkl ) 

[h(h~, h2, h3)= Miller indices, K uk, K ukt = cumulant 
tensors, g (h)=harmonic  temperature factor], was 
first proposed by Johnson (1969, 1970) as a formal 
expansion of the harmonic temperature factor in 
powers of 2 zrih, see also International Tables for X-ray 
Crystallography (1974). The inverse Fourier trans- 
form of (l) (if it exists) is given by the 'theoretical' 
Edgeworth series, which has differential operators in 
the exponent operating on the Gaussian function 
(Kendall & Stuart, 1969, p. 158). This series cannot 
be evaluated analytically and, thus, it is difficult to 
examine its behaviour as a function. Approximations 
to the 'theoretical' series (the 'practical' Edgeworth 
series) are obtained by expanding the exponential 
function and letting the differential operators of the 
first terms operate on the Gaussian function. In this 
way a series of Hermite polynomials is obtained in 
direct space. The first terms up to Hermite poly- 
nomials of sixth order are given by Johnson (1969, 
1970). 

The inverse Fourier transform of (1) does not exist 
when T(h) is diverging and thus the integral over 
T(h) is infinite. This happens when the highest even 
power of h has predominantly positive coefficients 
(i.e. when the sphere in h is not 'tight' everywhere). 
It is the purpose of this note to point out that the 
inverse Fourier transform of (1) (if it exists), i.e. the 
'theoretical' Edgeworth series has always negative 
regions and thus does not fulfil the requirements of 
a probability density function (p.d.f.). For this reason, 
it may happen that the cumulant expansion (l) 
becomes an inadequate tool for describing anhar- 
monic motions. In an earlier paper (Scheringer, 1977) 
we considered the cumulant expansion (1) as the best 
form of the anharmonic temperature factor in view 
of four lattice-dynamical calculations, which all 
yielded the temperature factor in the exponential 
form. We now think that the lattice-dynamical results 
cannot be correct in this respect in view of our present 
findings. 

The mathematical basis of our statement is a 
theorem by Marcinkiewicz (1938). It states that, in 
the one-dimensional case, 

f(h) = exp (ao+ a,h + a2h2 +. . . arh'. . .+ a,,h"), 

n > 2, (2) 

can never be the Fourier transform of a p.d.f. The 
theorem implies two cases. Either f(h) is divergent 
and cannot be the Fourier transform of any function 
or f(h) is convergent and then it is the Fourier trans- 
form of a function that has negative regions. The 
theorem has been generalized by Professor W. 
Gromes, Mathematisches Institut der Universit~it 
Marburg. He showed that it is also valid for imaginary 
terms in (2), i.e. for powers (ih) r, 1 <- r -  < n, and that 
it holds in n-dimensional space. A copy of Professor 
Gromes's calculation may be obtained from him on 
request. 

The impact of the Marcinkiewicz-Gromes theorem 
may become weakened when we take into account 
experimental resolution, which is always limited. In 
the refinement we use a data set with h<-hma x and, 
hence, we do not use the cumulant expansion in the 
range h >  hmax. This range is not determined by the 
data and, thus, is open either to speculation or to the 
design of a meaningful continuation of the tem- 
perature factor. Thus, it would be legitimate to give 
the temperature factor a course different from that 
fixed by the cumulant expansion. With such a con- 
tinuation of T(h), the negative regions in the p.d.f. 
will not necessarily disappear. The chance that they 
may disappear will be greater the smaller hmax and 
the weaker the anharmonicity. Since, with an actual 
structure, it is (nearly) impossible to calculate the 
inverse Fourier transform from the cumulant 
expansion in the range h-< hm~x and from a thought 
optimized course of T(h) in the range h > hmax, the 
corresponding p.d.f, cannot be obtained and a control 
concerning the negative regions cannot be performed. 

There are several examples in the literature where 
it is reported that the cumulant expansion (in direct 
space sometimes referred to as 'Edgeworth model') 
fails to converge in the refinement. In such refine- 
ments better results were obtained using the Gram- 
Charlier series as a p.d.f, or an OPP expansion. With 
the refinement of Li3N, Zucker & Schulz (1982) report 
reliability values R (Gram-Charlier) = 0-015, 
R(Edgeworth) =0.027, and Kuhs (1983), with the 
refinement of CsPbCl3, Rw(Gram-Charlier) = 0.034, 
Rw(Edgeworth)=0.043. With ice lh, Kuhs (1983) 
obtained intolerably high R values using the 
cumulant expansion, stating ' . . . t h e  bad fit (Rw-~ 
10%, S >  10) undoubtedly indicates an inadequacy 
of the Edgeworth model in reciprocal space'. Moss, 
McMullan & Koetzle (1980) used the cumulant 
expansion and an OPP model in the refinement of 
ZnS. At low temperatures, the two models proved to 
be equally good but 'at the two highest temperatures, 
where anharmonicity is most pronounced, the 
cumulant refinements have lower agreement factors 
than the OPP results'. Eriksson, Hermansson, Lind- 
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gren & Thomas (1982) report on the application of 
the cumulant expansion (1) ' . . .  that such refinements 
have not converged successfully, rather than that they 
have not been tried. Our refinement of ten y values 
for hydrogen and four for oxygen in the water 
molecule of K2C204. H20 resulted in large standard 
deviations and large correlations. The results of the 
refinement were not considered meaningful'. Finally, 
Johnson (1980) himself has noticed deficiencies of 
the cumulant expansion and locates them primarily 
in the 'interactions among even-order (real) and odd- 
order (imaginary) cumulant coefficients'. As a way 
out, Johnson has established the a formalism with 
which several structures have been successfully 
refined in recent years including structures containing 
mobile atoms in ionic conductors such as AgI (Cava, 
Reidinger & Wuensch, 1977). Compared to the 
cumulant expansion, the a formalism ditters 
primarily in that the exponential form of the tem- 
perature factor is discarded and the anharmonic terms 
are expanded into a series of quasi-Hermite poly- 
nomials. There is an unequivocally determined 
inverse Fourier transform to the c~ formalism that can 
serve as a p.d.f.; see also Zucker & Schulz (1982). 
These results from the literature may have their cause 
in the deficiency of the cumulant expansion that has 
been pointed out in this paper. 

The experimental evidence reported here may not 
be conclusive for ruling out the cumulant expansion 
as a useful description of anharmonic motions. 

However, we recommend controlling the results 
obtained with the cumulant expansion by means of 
corresponding results obtained with other anhar- 
monic expansions. 

I am indebted to Professor Dr W. Gromes, 
Mathematisches Institut der Universifiit Marburg, for 
having proved that the Marcinkiewtcz theorem is 
generally valid. 
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Abstract 

The error in the temperature factor arising from the 
use of anharmonic perturbation theory is investigated 
for a one-dimensional one-particle potential by com- 
parison with an exact evaluation of the Fourier trans- 
form of the Boltzmann probability density. Results 
are presented for a range of values of cubic and 
quartic coefficients for temperature factors derived 
from moment or cumulant expansions about the har- 
monic probability density function. It is found that 
either expansion provides an adequate approxima- 
tion to the anharmonic temperature factor for moder- 
ately small anharmonicity but that both expansions 

0108-7673/85/010081-05501.50 

become increasingly Inadequate as the anharmonicity 
gets larger. 

1. Introduction 

For temperatures where classical approximations are 
adequate, the starting point for the derivation of the 
anharmonic temperature factor is the Boltzmann one- 
particle probability density function (p.d.f.), 
exp [ - V ( u ) / k B T ] ,  where V(u) is the one-particle 
potential (OPP), u is the atomic displacement from 
a reference position, kB is the Boltzmann constant 
and T is the absolute temperature. Expansions about 
the harmonic (Gaussian) p.d.f, are then made as 
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